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Abstract
We explore with technological tools on some problems that originated from a college

practice entrance question (see [12]). The problems involve an affi ne transformation whose
image is a locus based on lines passing through a fixed point (see Figure 1(a) or 1(b)),
which has been explored in ([17], [18], [19], [20]) by using parametric equations. We are
interested in the topological structures for the shapes of image curves or surfaces when
the scaling factor s vary. We found the value for s which affects the topological structures
for the loci in 2D first, and we extend the results to 3D based on the arguments in 2D.
Finally, we include an exploration on the topological structure for the locus ellipsoid when
scaling factor s and the fixed point A approach to infinity.

1 ACollege Entrance ExamPractice Problem fromChina

We explore a problem that originated from a college practice entrance problem (see [12]).
Explorations: We are given a fixed circle and a fixed point A in the interior of the circle

(x−a)2+(y−b)2 = r2. A line passes through A and intersects the circle at C and D respectively,
and the point E is the midpoint of CD. Find the locus of E when C moves along the circle.
This problem has been discussed using parametric equation approaches in 2D and 3D, see

([17], [18], [19], [20]). In this paper, we will use the implicit equation of the locus and assume the
fixed A = (a1, a2) to be outside the circle or the ellipse. We are given a fixed point A = (a1, a2)
and the lines passing through this fixed point to intersect a conic c : x2 + qy2 = 1 at C and D
(q > 0). The point E lies on CD and satisfies

−−→
ED = s · −−→CD, (1)

where s is a given real number. For convenience, we sometimes write this as

E = sC + (1− s)D. (2)
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Since D is one of the points of intersection between the line passing through A and the conic
c, sometimes we call D as the antipodal point of the point C. We remind the readers that a
generalized plane quartic curve is a bivariate quartic equation (see [16]). Our aim is to study
the topology of the obtained parametrized quartic curve C(a1, a2, q, s;x, y), and determine the
value(s) of s which will change the topological structures for the quartic curve C(a1, a2, q, s;x, y),
and we extend the results to 3D accordingly.

2 Preliminary

A topological space is a non-empty set together with a topological structure that is given by
the open sets of the topology. A non-empty set X can be equipped with different topological
structures, and any subset A ⊂ X can be endowed with an inherited topological structure,
namely, the relative topology: the open sets in the relative topology on A are exactly the
subsets of the form A ∩O for some open sets O of X.
For the spaces Rn, with coordinates (x1, . . . , xn), the usual topological structure is given by

a base of open balls, which is defined by the metric space structure of Rn. Recall that themetric
function d(x, y) =

√
(x1 − y1)2 + · · · (xn − yn)2, for x = (x1, . . . , xn) and y = (y1, . . . , yn)makes

(Rn, d) a metric space. This metric gives rise to open balls Bε(x) = {y ∈ Rn | d(x, y) < ε},
where ε is a positive real number, which are the basic open sets for the usual topology on Rn.
Thus, any curve or any hyper-surface in Rn can be viewed as topological spaces with their

respective relative topologies, acquired from the space in which they are embedded. For the
cases we are interested in, the environment spaces will be simply R2 or R3; thus, we can view
these curves and surfaces as relative topological spaces on which we can apply topological tools
that are introduced in what follows.
Now, let us recall a fundamental concept in topology, namely that of continuity. Let (X, τX)

and (Y, τY ) be two topological spaces, with τX and τY their respective topologies. A function
f : X −→ Y is continuous if for any open set O ⊂ Y it holds that f−1(O) ⊂ X is open in X.
Here, the notation f−1(U) denotes the inverse image, in X, of U ⊂ Y .
When f is bijection, then it has an inverse f−1 : Y −→ X defined by: for any y ∈ Y ,

f−1(y) = x ∈ X if and only if f(x) = y. We say that f is a homeomorphism if it is a
continuous bijection and with f−1 also being continuous. In this situation, X and Y are said
to be homeomorphic topological spaces.
Homeomorphisms between topological spaces are also called continuous transformations, or

topological transformations. Intuitively, these transformations can be thought of as functions
that transform points of one space, that are arbitrarily close to each other, onto points of
another space that are also arbitrarily close. Spaces that are related in this way are said to be
topologically equivalent. In a technical sense, we have to be careful with the notion of closeness
since it only makes sense when we can measure distances in a space, so we need to have a metric
structure. Nevertheless, that is what we meant by “intuitively”. It is intuitively evident that
all simple closed curves in the plane and all closed polygons are topologically equivalent to a
circle. Similarly, all closed cylinders, closed cones, convex polyhedra, and other simple closed
surfaces are topologically equivalent to a sphere.
For the problem described in the“Exploration”, now we are interested in a fixed point A

outside of a given conic. For example, the loci in red are shown in Figures 1(a) and (b), when
the fixed point A is outside a circle, x2 + y2 = r2. More specifically, we encourage the readers
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to use their favorite DGS (Dynamic Geometry System) tools to explore the followings:

1. WhenA = (1.598024, 0.6045678), s = 0.25 and r = 2, we provide such case in the following
screenshot using [2] in Figure 1(a).

Figure 1(a) (left). The fixed point A is outside the circle and s = 0.25

Figure 1(b) (right). The fixed point A is outside the circle and s = 1.43

2. If A = (1.6019543,−2.2343767) is outside the circle, and s = 1.43, the locus is shown in
Figure 1(b).

Among other techniques, we used the automated GeoGebra Discovery (see [3]) to obtain
the accurate locus by computing the locus equation for the investigated geometric setups au-
tomatically. The following table explains how a possible construction protocol can be given by
the user to get a quartic polynomial equation for the case s = −1.5, A = (2, 1), if the unit circle
is used. Recent versions of GeoGebra Discovery allow the use of the Dilate tool in a symbolic
environment, therefore it is expected to get the output locus equation very quickly. As of today,
version 2024Jun29 can compute and plot the corresponding quartic curves at about 9.9 frames
per second.

No. Name Icon Description Definition Value
1 Number s s = −1.5
2 Point A A = (2, 1)
3 Point O Intersection of xAxis and yAxis Intersect (xAxis, yAxis) O = (0, 0)
4 Point U Point on xAxis Point (xAxis) U = (1, 0)
5 Circle c Circle through U with center O Circle (O,U) c : x2 + y2 = 1
6 Point D Point on c Point (c) D = (0.53, 0.85)
7 Line l Line A, D Line (A,D) l : 0.15x − 1.47y =

−1.16
8 Point C Intersection of c and l Intersect (c, `, 2) C = (−0.7, 0.71)
9 Point E C dilated by factor s from D Dilate (C, s,D) E = (2.39, 1.04)
10 Implicit Curve eq1 LocusEquation(E, D) LocusEquation (E,D) eq1 : x4−4x3+2x2y2−

2x2y + 4x2 − 4xy2 −
60xy+64x+y4−2y3+
49y2 + 32y = 80

3
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2.1 The special case of a circle

We consider the circle when a1 = 0, a2 is any real number, q = 1, and by using symmetry, the
fixed point A = (0, a2) on the y-axis can be assumed. For example, we use [4] to demonstrate
such a scenario in the following Figure 1(c).

Figure 1(c). Locus in red

Intuitively, we see that the topological structures for the loci, shown in red color, in Figures 1(b)
and (c) are different. The Figure 1(b) looks like a figure 8 with one point of self-intersection, and
Figure 1(c) is not and has a cusp. Therefore, we say that the Figure 1(b) is not topologically
equivalent to the Figure 1(c). In this exploration, we study the topology of the obtained family
of parametrized quartic curves, which is denoted by C(a1, a2, q, s;x, y). We shall prove that the
topology is changing at

s =
1±

√
a21 + qa22
2

.

We proceed with the following steps:

1. We look for the algebraic equations for points on a circle, collinearity and dilation.

2. We use elimination, by choosing a sensible polynomial factor of the generator polynomial
p of the elimination ideal, so a parametrized curve C can be obtained.

3. The solutions of the equation system {C = 0, dC
dx

= 0, dC
dy

= 0} can help to find the critical
points of all possible curves.
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2.2 System of equations for the special case of a circle

We consider the system of equations for C(a1 = 0, a2, q = 1, s;x, y), where a2 is any real number:

e1 := c21 + c22 = 1, e2 := d21 + d22 = 1,

e3 := det

c1 c2 1
d1 d2 1
0 a2 1

 = 0,

e4 := x− d1 = s · (c1 − d1),
e5 := y − d2 = s · (c2 − d2),
I := 〈e1, e2, . . . , e5〉 ∩Q[a2, s, x, y], 〈p〉 := I, C | p,

S := {C = 0,
dC
dx

= 0,
dC
dy

= 0}.

The following Giac code (see [5]) solves the system:

e1:=d1^2+d2^2=1
e2:=c1^2+c2^2=1
e3:=det([c1,c2,1],[d1,d2,1],[0,a2,1])
e4:=x-d1=s*(c1-d1)
e5:=y-d2=s*(c2-d2)
I:=eliminate([e1,e2,e3,e4,e5],[c1,c2,d1,d2])
p:=I[0]
c:=(factor(p))[2]
dcx:=diff(c,x)
dcy:=diff(c,y)
S:=solve([c,dcx,dcy],[x,y,s])

In view of the intermediate step, when computing the principal ideal I = 〈p〉 , is of the form

p =
(
x2 + y2 − 1

) 4a22x
2s2 − 4a22x

2s+ a22x
2 − 4a22s

2 + 4a22s+ a22y
2 − a22

−2a2x
2y + 8a2s

2y − 8a2sy − 2a2y
3 + 2a2y

+x4 − 4x2s2 + 4x2s+ 2x2y2 − x2 − 4s2y2 + 4sy2 + y4 − y2

 , (3)

we note that the first factor corresponds to a degenerate case. Therefore, we only need the
second factor in the next intermediate step: c:=(factor(p))[2].
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Solution (with Giac), computed via Gröbner bases and other techniques:

(x, y, s) = {
(0, a2, 0) ,

(0, a2, 1) ,(
±
√
−y2 + a2y, y,

1

2

)
,(

0, a2,
1± a2

2

)
,(

0, a2,
1

2

)
,

(0, a2, s)

}.

Geometrically, only the solution x = 0 makes sense. Assuming a special case a2 = 2,
the candidates for s are: 0, 1, 3

2
,−1

2
, 1
2
. We shall see when s = 3

2
or −1

2
(which produces the

same locus), is the boundary where the topology of the locus changes. We check the algebraic
solutions geometrically as follows:

Example 1 We consider the circle when a1 = 0, a2 = 2, q = 1, the fixed point A = (0, a2),
and s = 0, 1

2
, 1, 3

2
,−1

2
. The loci are depicted in red in Figure 2(a)-2(e) respectively using [4]. In

addition, we include the corresponding GeoGebra file in [S1] for further explorations.

Figure 2(a). Locus when
s = 0

Figure 2(b). Locus when
s = 0.5

Figure 2(c). Locus when
s = 1
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Figure 2(d). Locus when s = 1.5 Figure 2(e). Locus when s = −0.5

3 Generalization to an ellipse and a special external point
A

We consider the general ellipse of x2 + qy2 = 1, a quartic curve C(a1 = 0, a2, q > 0, s;x, y). We
have the following equations:

e1 := c21 + qc22 = 1,
e2 := d21 + qd22 = 1,

e3 := det

c1 c2 1
d1 d2 1
0 a2 1

 = 0,

e4 := x− d1 = s · (c1 − d1),
e5 := y − d2 = s · (c2 − d2),

I := 〈e1, e2, . . . , e5〉 ∩Q[a2, s, x, y],
〈p〉 := I, C | p,

S := {C = 0, dC
dx

= 0, dC
dy

= 0}.

During an intermediate step we yield the following output of a principal ideal I = 〈p〉 ,
which is an extension of the Equation (??).

p =
(
qy2 + x2 − 1

) q2a22y
2 + 4a22qx

2s2 − 4a22qx
2s+ a22qx

2 − 4a22qs
2 + 4a22qs+ a22y

2 − a22q
−2a2qx

2y + 8a2qs
2y − 8a2qsy − 2a2q

2y3 + 2a2qy
+x4 − 4x2s2 + 4x2s+ 2qx2y2 − x2 − 4qs2y2 + 4qsy2 + qy4 − qy2

 .

Similar to the circle case, the first factor corresponds to a degenerate case, where we identify
the polynomial defining the ellipse. Therefore, we need only the second factor in the next step:
c:=(factor(p))[2].
Solution: Geometrically, only the solution x = 0 makes sense. Therefore, candidates for s

are:

0, 1,
1± a2

√
q

2
,
1

2
.
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3.1 Checking s =
1±a2

√
q

2 geometrically

Example 2 Consider the ellipse of c : x2 + qy2 = 1. If we set the fixed point A = (0, a2) with
a2 = 2 and q = 4, then s = 2.5 or s = −1.5 (which produces the same locus), is the boundary
where the topology of the locus changes. We demonstrate such a scenario in Figure 3 below.
We also include the GeoGebra file for readers to explore in [S2].

Figure 3. Locus changes its
topology when s = 2.5 or −1.5

3.2 Full generalization

1. Computation of the Gröbner bases is too diffi cult (it leads to exceeding memory resources
of more than 130 GB). We kindly thank RISC (Research Institute of Symbolic Compu-
tation, Hagenberg, Austria) for providing us with their “big memory server”to help us
attempt computing the result in the general case.

2. We used Gröbner cover instead of traditional Gröbner basis computation, by using the
computer algebra system Singular (See Appendix section for its input and output), and
the package grobcov. See [15] for more details.

3. When performing the computation, there are lots of non-geometric and degenerate pieces
of information. We searched for polynomials that contain variables a1, a2, q, s.

4. We factorized the polynomials and tried to find solutions for s that is a formula of a1, a2, q
(but not of x or y).

5. With several attempts, we get a simple factorized form:

s · (s− 1) · (2s− 1)2 · (qa22 + a21 − 4s2 + 4s− 1)2 · (y − a2),

and this is equal to 0 if, and only if, s is equal to 0, 1, 1
2
,

1±
√
a21 + qa22
2

or y = a2. (We

are interested in s, so the last result does not play a role.)
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Theorem 3 (Algebraic Interpretation) If a21 + a22q− 1 6= 0 and a21 + a22q 6= 0 and 3a21− a22q 6= 0
and q 6= 0 and a2 6= 0 and a1 6= 0, then the locus curve C(a1, a2, q, s;x, y) may change its

topology at s =
1±

√
a21 + qa22
2

.

Theorem 4 (Geometric Interpretation) If A /∈ C and a1/a2 6=
√

3/q and A is outside of the

axes, then the locus curve C(a1, a2, q, s;x, y) may change its topology at s =
1±
√
a21+qa

2
2

2
.

4 Is this still just a conjecture?

We actually obtained an algebraic statement. Its geometric counterpart should be verified!
How can this be achieved for such a large number of input cases (a1, a2 ∈ R, q ∈ R+)?

4.1 A proof based on affi ne transformations

1. Let us consider the general case C∗(a∗1, a∗2, q∗ > 0, s;x, y), and we let a1 = a∗1, a2 = a∗2
√
q∗.

2. Let us stretch the whole construction to get q = 1.
This results in a curve C (a1, a2, 1, s;x, y) because the dilation factor remains the same.
The stretching ratios are 1 :

√
q∗ with respect to x : y.

3. Since we have a circle now, it is allowed to rotate the whole construction about the origin
to have a′1 = 0. So we obtain a second curve C ′ (0, a′2, 1, s;x, y) which can be studied via
elimination without any diffi culties.

4. Since we used stretching and rotation, the topology of the curves did not change.

5. By conclusion, we learn that the general case C(a∗1, a∗2, q∗, s;x, y) can be traced back to
the case of a circle and a special point on the y-axis.

4.2 3D proof

By following the ideas from 2D:

1. We start with a fixed point A = (0, a2, 0) on the y-axis, and the ellipsoid whose equation
is

x2 + qy2 + qz2 = 1, (4)

which is obtained by rotating the ellipse x2 + qy2 = 1 around the y-axis.

2. Using the same argument about the ellipse for x2 + qy2 = 1, as explained in Section 4.1,
we prove that the topology for (4) changes at

1± a2
√
q

2
. (5)

3. For the general case of the topological problem for the ellipsoid of the form

x2 + q1y
2 + q2z

2 = 1, (6)

we may apply an affi ne transformation, and the problem for Equation (6) can be traced
back to the simple case of (4) and a special point on the y-axis.

9
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4.3 Checking s =
1±a2

√
q

2 geometrically for 3D

Example 5 Consider the ellipsoid

x2 + qy2 + qz2 = 1, (7)

with a fixed point A = (0, a2, 0) on the y-axis. We set a2 = 2 and q = 4 then it follows from
the corresponding 2D formula (5) that s = 2.5 (or s = −1.5), is the boundary point where the
locus changes its topology. We illustrate such scenarios in Figures 4(aa)-4(d) respectively when
s = 2.25, 2.5, 2.7 and 2.9.

Figure 4(aa). Locus
when s = 2.25

Figure 4(ab). Second view when
s = 2.25

Figure 4(ac). Third view when
s = 2.25

Figure 4(b). Locus when
s = 2.5

Figure 4(c). Locus when
s = 2.7

Figure 4(d). Locus
when s = 2.9

5 Locus Surfaces and Linear Transformations

In earlier sections, we discussed how topological structures change with respect to the parameter
s when the fixed point A is given at a finite distance from the origin. Now we summarize
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the scenario when the fixed point A is at an infinity, which has been discussed in [19]. For
completeness, we summarize it here.
It is known that the image of an ellipsoid under a linear transformation is another ellipsoid.

We proved this observation directly in [19] when the fixed point A is at an infinity. We quote
two main results from [19] as follows:

Proposition 6 If Σ is the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1, Ainf(u0, v0) be the fixed point at an infinity

in the direction of (cosu0 sin v0, sinu0 sin v0, cos v0), C ∈ Σ and Dinf be the “antipodal” point
of C corresponding to Ainf(u0, v0) satisfying Einf = sC + (1− s)Dinf , then there exists a matrix

LeE = sI + (1− s)LeD (8)

such that LeE C = Einf , and therefore, the locus surface ∆inf(s, u0, v0) is the image of Σ under
the linear transformation given by the matrix LeE.

Proposition 7 For s ∈ R \ {1}, the ellipsoid Σ and locus ellipsoid ∆inf(s, u0, v0) intersect
themselves tangentially at an elliptical curve.

Since the locus surface ∆inf(s, u0, v0) is an ellipsoid and since Σ ⊂ ∆inf(s, u0, v0) and two
surfaces are tangent to each other. The locus surface ∆inf(s, u0, v0) becomes a longer ellipsoid
containing Σ as s increases. It is natural to imagine what will happen when s → ∞. As
one would expect that the locus ellipsoid ∆inf(s, u0, v0) in this case would be blown up to a
cylinder, which changes its topological structure, and it will not be topologically equivalent to
an ellipsoid. We use the following example from [19] for demonstration.

Example 8 We depict the locus elliptical cylinder (yellow) when a = 5, b = 4, c = 3, with
u0 = π

6
, v0 = π

3
together with the original ellipsoid (blue) in Figure 5(a). The two surfaces are

tangent to an elliptical curve as seen in Figure 5(b).

Figure 5(a). The original
ellipsoid and its locus when

s→∞.

Figure 5(b). Ellipsoid and its locus
are tangent at an elliptical curve..
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6 Conclusion

The implementation of technological tools into research and teaching has changed the approach
to old questions and also enabled the exploration of new situations, which until now seemed
out of reach. Dynamic Geometry is the most popular tool among teachers and High School
students, but some decades ago, software has been developed for more abstract domains, such as
Number Theory, Group Theory, etc.. The traditional progression definition-theorem-proof with
examples at some places has been replaced by exploration-discovery-conjecture-proof. Many
mathematical domains became experimental.
Technology provide the researcher and the learner with crucial intuitions, before an attempt

to find more rigorous analytical solutions. After experimentation with software, the question
may be : "what happens here? what can I prove here?"
In this paper, we have gained geometric intuitions while using a DGS. College entrance

exams can lead to challenging problems. Dynamic geometry software with computer algebra
extensions may suggest valid conjectures. Most of the time, a DGS leads to discovery and
conjecture, and a rigorous proof is obtained using the symbolic algebraic abilities of a CAS.
The respective roles of DGS and CAS may be versatile, depending on the topic. Generally the
DGS provides numerical support and the CAS symbolic exact work, but not always. GeoGebra
Discovery has symbolic complements to numerical commands which pre-existed in GeoGebra.
In [9], the CAS had to be used for numerical experimentation, not only the DGS. See also [8].
The working environment has changed, and the technological literacy is crucial. M. Artigue [1]
points out that technological knowledge is an integral part of the new mathematical knowledge.
We extend systems with new functionalities (like symbolic Dilation for GeoGebra Discov-

ery) that can speed up the investigation substantially. Free computer algebra systems (like
Giac) can be comparable to commercial systems.
Evolving technological tools have made mathematics fun and accessible on the one hand,

but they also allow the exploration of more challenging and theoretical mathematics. We hope
that when mathematics is made more accessible to students, more students can be attracted to
the field, and inspired to investigate problems ranging from the simple to the more challenging.
Moreover, the usage of technology may encourage greater collaborations, between humans,

and between man and machine. We give here also an example where different kinds of software
have to collaborate with humans. Communication between machines is still to be developed.
E. Roanes-Lozano [11] expressed often this wish, some progress has been made [13], but is still
quite slow. Improving technological tools among researchers in mathematics and mathematics
education, and developing all kinds of communication and collaboration, is a crucial task.
Following Shulman [14], Loewenberg et al. [10] analyze and explain the importance of changing
the teacher’s knowledge for teaching. This requires also analyzing the didactic transition [7],
from mathematical knowledge of taught knowledge ("du savoir savant" au "savoir enseigné").
We claim that working in the way we propose in this paper will not only spark new areas of
research but also increase future teachers’content knowledge at the same time.

7 Supplementary Electronic Materials

[S1] GeoGebra file for Example 1: https://www.geogebra.org/m/fjb9bzz4.

[S2] GeoGebra file for Example 2: https://www.geogebra.org/m/xeykgv7t.
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[S3] GeoGebra file for Example 5: https://www.geogebra.org/m/pkv54eeg.
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8 Appendix

• Singular-input: LIB "grobcov.lib";

ring R=(0,a1,a2,q),(x,y,s),lp;
poly c=a2^2*q^2*y^2+4*a2^2*q*x^2*s^2-4*a2^2*q*x^2*s+a2^2*q*x^2
-4*a2^2*q*s^2+4*a2^2*q*s-a2^2*q-2*a2*q^2*y^3-2*a2*q*x^2*y
-8*a2*q*x*y*s^2*a1+8*a2*q*x*y*s*a1+8*a2*q*y*s^2-8*a2*q*y*s
+2*a2*q*y+q^2*y^4+2*q*x^2*y^2-2*q*x*y^2*a1+4*q*y^2*s^2*a1^2
-4*q*y^2*s^2-4*q*y^2*s*a1^2+4*q*y^2*s+q*y^2*a1^2-q*y^2
+x^4-2*x^3*a1-4*x^2*s^2+4*x^2*s+x^2*a1^2-x^2+8*x*s^2*a1
-8*x*s*a1+2*x*a1-4*s^2*a1^2+4*s*a1^2-a1^2;
poly dcx=4*a2^2*q*2*x*s^2-4*a2^2*q*2*x*s+a2^2*q*2*x-2*a2*q*2*x*y
-8*a2*q*y*s^2*a1+8*a2*q*y*s*a1+2*q*2*x*y^2-2*q*y^2*a1+4*x^3
-2*3*x^2*a1-4*2*x*s^2+4*2*x*s+2*x*a1^2-2*x+8*s^2*a1-8*s*a1+2*a1;
poly dcy=a2^2*q^2*2*y-2*a2*q^2*3*y^2-2*a2*q*x^2-8*a2*q*x*s^2*a1
+8*a2*q*x*s*a1+8*a2*q*s^2-8*a2*q*s+2*a2*q+q^2*4*y^3+2*q*x^2*2*y
-2*q*x*2*y*a1+4*q*2*y*s^2*a1^2-4*q*2*y*s^2-4*q*2*y*s*a1^2
+4*q*2*y*s+q*2*y*a1^2-q*2*y;
ideal I=c,dcx,dcy;
short=0;
grobcov(I); // the input is less than 900 characters

• Singular-output file can be found in this link:

https://ejmt.mathandtech.org/Contents/v19n1p1/singular-output.pdf.
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